മ്മര്യ ම 6මකම් අවරික්/முழுப் பதிப்புரிமையுடையது/All Rights Reserved]

I

අධිතපන අමාතතංශය අධිතපන අමාතතංශය අධිතපන අම්**අධිතාපානි අමාතිතාංශය** යිටිනපන අමාතතංශය අධිතපන අමාතතංශය අධිතපන අමාතතංශය අ සහ්ඛා அமைச்சு සහ්ඛා அமைச்ச Ministry of Education Ministry of Education Ministry of E**ජි බාඛාය කාර්තියට කාර්තිය** අධිතපන අමාතතංශය අධිතපන අමාතතංශය අධිතපන අම**ාත්ය අධ්ය අධ්ය අධ්ය සහ්ඛා**ය අමාතතංශය අධිතපන අමාතතංශය අධිතපන අමාතතංශය අ සහ්ඛා அமைச்சு கல்ඛා அமைச்சு கல்

G.C.E.(A.L) Support Seminar - 2023

குංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics 10 E I

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි ගෙහනුස வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

Use additional reading time to go through the question paper, select the questions you will answer and decide which of them you will prioritise.

Index Number				
--------------	--	--	--	--

Instructions:

* This question paper consists of two parts;

Part A (Questions 1-10) and Part B (Questions 11-17)

* Part A:

Answer all questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed.

* Part B:

Answer five questions only. Write your answers on the sheets provided.

- * At the end of the time allotted, tie the answer scripts of the two parts together so that Part A is on top of Part B and hand them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

For Examiners' Use only

	Combined Matne	
Part	Question No.	Marks
	1	
	2	
	3	
	4	
A	5	
	6	
	7	
	8	
	9	
	10	
	11	-
	12	
ъ	13	
В	14	
	15	
	16	
	17	
	Total	

(10) Combined Mathematics I

	Total
In Numbers	
In Words	

		Code Numbers
Marking Exami	ner	
Checked by:	1	
	2	
Supervised by:		

	Part A
1.	Using the principal of Mathematical induction prove that for all $n \in \mathbb{Z}^+$ $\sum_{r=1}^{n} 2^r = 2(2^n - 1)$
2	Sketch the graph of = $ x-2 -2 $. Hence or otherwise solve the equation $ x-2 -2 = \frac{x}{2}$

3	Shade the region R that represents the complex number Z satisfying the condition $0 \le ArgZ \le \frac{\pi}{3}$ in
	an Argand Diagram.
	Also find the least Value of $ iZ + 2 $ in the region R .
	,
4	Write down the binomial expansion of $(1+x)^n$ in ascending powers of x. Given that the
4	Write down the binomial expansion of $(1 + x)^n$ in ascending powers of x . Given that the coefficient of x^2 in the expansion $(1 + x + ax^2)^7$ is 14. Show that $a = -1$.
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	

5	Show that $\lim_{x \to \frac{\pi}{4}} \frac{2\sqrt{x} - \sqrt{\pi}}{\sin(x - \frac{\pi}{4})} = \frac{2}{\sqrt{\pi}}$
	$f(x) = \int_{\mathbb{R}^n} \int_$
6	If $f(x)=(x+1)tan^{-1}\sqrt{x}-\sqrt{x}$, then find $\frac{d[f(x)]}{dx}$. Hence, $\mathrm{deduce}\int tan^{-1}\sqrt{x}\ dx$. The region enclosed by the curves $y=\sqrt{tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	If $f(x)=(x+1)tan^{-1}\sqrt{x}-\sqrt{x}$, then find $\frac{d[f(x)]}{dx}$. Hence, $\mathrm{deduce}\int tan^{-1}\sqrt{x}dx$. The region enclosed by the curves $y=\sqrt{tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{3}(4\pi-3\sqrt{3})$ cubic units.
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π
6	enclosed by the curves $y=\sqrt{\tan^{-1}\sqrt{x}}$, $x=3$ and $y=0$ is rotated about the $x-$ axis through 2π

7	A curve C is given by the parametric equations $x = a \cos \theta$ and $y = b \sin \theta$ for $(0 \le \theta \le \pi)$.
	Show that the equation of the normal to the curve C, at point P, is
	$ax \sec \alpha - by \csc \alpha + b^2 - a^2 = 0$.
	Also find the normal to the curve C, at point $\left(-\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ on the curve C.
	The straight line $l \equiv y - mx = 0$ passes through the point of intersection of two
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line
	straight lines $4x + 3y - k = 0$, where k is constant and $5x - 12y + 7 = 0$. Find the value of m in terms of k . Further, given that the line, $l = 0$ is perpendicular to the line

A circle S w $x^2 + y^2 + x$	x - 7y + 5 = 0 bisects the circumference of the circle S. Show that there are two such
	find their equations.
•••••	
	$tanA = \frac{5}{12}$ and $sinB = \frac{4}{5}$; Where A and B are such that $\pi < A < \frac{3\pi}{2}$ and $\frac{\pi}{2} < B < \frac{3\pi}{2}$
	$tanA = \frac{5}{12}$ and $sinB = \frac{4}{5}$; Where A and B are such that $\pi < A < \frac{3\pi}{2}$ and $\frac{\pi}{2} < B < 0$ use of $sin(A + B)$

සියලු ම හිමිකම් අවරිණි/(pppi பதிப்புரிமையுடையது/All Rights Reserved)

වේකපත අමාතකංශය අධ්කපත අමාතකංශය අධ්කපත අමාතක**ලටකාලනා අමාතකාර ශ්රා**පත අමාතකංශය අධ්කපත අමාතකංශය අධ්කපත අමාතකංශය අ හේඛා அඟයුම් සහිබා அඟයුම් සහිබා அඟයුම් සහිබා அඟයුම් සහිබා ඉණයුම් සහිබා அඟයුම් සහිබා அඟයුම් සහිබා அඟයුම් සහිබා அණයුම් සහිබා Ministry of Education Ministry of Education Ministry of Educ**සි බෝ** y **அඟය ජීපි**try of Education Ministry හිටිය. අධ්යත්ත අමාතකංශය අධ්යතන අමාතකංශය අධ්යතන අමාත**ාර්ගය අධ්යත්තය අමා**තකංශය අධ්යත්තය අමාතකංශය අධ්යතන අමාතකංශය අධ්යතන අමාතකංශය හේඛා அඟයුම් සහිබා அඟයුම්

G.C.E.(A.L) Support Seminar - 2023

கேංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

Part B

- * Answer five questions only.
- **11(a)** Write down the sum and the product of the roots of quadratic equation $ax^2 + bx + c = 0$, in terms of a, b and c where a, b, $c \in \mathbb{R}$, $a \ne 0$

Given that $f(x) \equiv x^2 - p^2 q x + q^2$ where $p, q \in \mathbb{R}^+$ and roots of the equation f(x) = 0 are α and β .

- (i) Find $\alpha^{\frac{3}{2}} + \beta^{\frac{3}{2}}$ in terms of p and q.
- (ii) If α and β are real, then find the least integer value of p.
- (iii) For the above p value find the quadratic equation in terms of q, whose roots are $\alpha^{\frac{3}{2}}$ and $\beta^{\frac{3}{2}}$.
- **(b)** Let $P(x) \equiv 2x^3 + x^2 2x + \lambda$; where $\lambda \in \mathbb{R}^+$
 - (i) If λ is zero of the polynomial P(x), find λ
 - (ii) If $-\lambda$ is zero of the polynomial P(x), find λ
 - (iii) For the value of λ which satisfies both (i) and (ii), write down the polynomial P(x) and express P(x) as a multiple of linear factors.
 - (iv) Find the remainder, when P(x) + 3x + 2 is divided by $x^2 + 1$.
- **12** (a) An institution has 8 cars and there are parking facilities in two rows, 4 cars in each row in the park.
 - (i) Find the number of ways in which 8 cars can be parked.
 - (ii) Find the number of ways in which 8 cars can be parked, if the first place in the first row is to be reserved for chairman's car and a place in the first row for the car of secretaries.
 - (iii) If the first place in the first row should be given to either one of the two cars of chairman's or secretaries, and if the other car should also have a place in the first row, find the number of ways in which the cars can be parked.

(b) Find the value of the constants A and B such that,

$$\frac{r^2 + 3r - 1}{(r^2 - r + 1)(r^2 + r + 1)} = \frac{Ar + B}{r^2 - r + 1} - \frac{Ar + 2B}{r^2 + r + 1} \qquad \text{; where } r \in \mathbb{Z}^+.$$

If,
$$U_r = \frac{r^2 + 3r - 1}{(r^2 - r + 1)(r^2 + r + 1)}$$
 then determine f_r such that $U_r = f_r - f_{r+1}$

Hence, show that
$$\sum_{r=1}^{n} U_r = 2 - \frac{(n+2)}{n^2 + n + 1}$$

Is this series convergent? Justify your answer.

If,
$$\sum_{r=1}^{n} U_r < 2 - \frac{11}{91}$$
 then find greatest value of n .

- 13 (a) If $A = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$, show that any real matrix B which commutates with A, under multiplication, can be written in the form $\lambda A + \mu I$, where λ and μ are real numbers and I is the identity matrix of order 2. Find the value of λ and μ when $B = A^2$ Hence Find A^{-1} .
 - (b) By Factorizing Z^6 -1, completely solve the equation $Z^6=1$. If Z_1 and Z_2 are any two distinct roots of the equation $Z^6=1$, show by reference to an Argent diagram, or otherwise, that the three possible values of $|Z_1-Z_2|$ are 1, 2 and $\sqrt{3}$.
 - (c) By using De moivre's theorem for positive integer n,

Show that
$$\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n = \cos n\left(\frac{\pi}{2}-\theta\right) + i\sin n\left(\frac{\pi}{2}-\theta\right)$$

Deduce that,
$$\left(\frac{1+i}{1-i}\right)^{2n} = (-1)^n$$

14 (a) Let
$$f(x) = \frac{x(x+3)}{(x+1)^2}$$
 for $x \neq -1$

Show that f'(x) the first derivative of f(x) with relative to x, is given by

$$f'(x) = -\frac{(x-3)}{(x+1)^3}$$

Hence, find the intervals on which f(x) is decreasing and the intervals on which f(x) is increasing.

Obtain the coordinates of the turning point of f(x).

It is given that
$$f''(x) = \frac{2(x-5)}{(x+1)^4}$$
 for $x \neq -1$.

Find the coordinates of the point of inflection on the graph of y = f(x).

Sketch the graph of y = f(x) indicating the asymptotes, turning point and point of inflection.

(b) The shaded region shown in the figure is obtained by removing a semicircular lamina of radius x m from a rectangle of length 2(x + y) m and width x m.

The area of the rectangle is $8\pi m^2$. Show that the perimeter p of the shaded region, measured in meters, is given by $P = \pi \left(x + \frac{16}{r}\right)$

- 15 (a) Determine the values of constants A, B and C such that $x^4 + 1 = A(x^4 - 1) + B(x^2 + 1)(x + 1) + C(x^2 + 1)(x - 1) - (x^2 - 1)$ for $x \in \mathbb{R}$, hence, find $\int \frac{x^4+1}{x^4-1} dx$
 - **(b)** (i) If $y = x + \cos x \sin^3 x$ show that $\frac{dy}{dx} = 1 + 3\sin^2 x 4\sin^4 x$. Given that $I = \int_0^{\frac{\pi}{2}} (x + 3x \sin^2 x - 4x \sin^4 x) dx$. By using above result and using integration by parts, Show that $I = \frac{1}{8}(\pi^2 - 2)$
 - (ii) Further given that,

$$J_{1} = \int_{0}^{\frac{\pi}{2}} (1 + 3\cos^{2}x - 4\cos^{4}x) dx$$

$$J_{2} = \int_{0}^{\frac{\pi}{2}} (x + 3x\cos^{2}x - 4x\cos^{4}x) dx$$
Using the result $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$
Show that $I = \frac{\pi}{2}J_{1} - J_{2}$
Now given that $\frac{d}{dx}(x - \sin x \cos^{3}x) = 1 + 2\cos^{2}x - 4\cos^{4}x$

show that $J_2 = \frac{1}{8}(\pi^2 + 2)$, deduce the value of J_1 .

Using the substitution $\sqrt{x^3 + 1} = t$, Evaluate $\int_0^2 \frac{x^8}{\sqrt{x^3 + 1}} dx$.

16 $l_1: x - \sqrt{3}y + 1 + k = 0$ and $l_2: x + \sqrt{3}y + 1 - k = 0$ are two given straight

lines passing through the point (-1,3) show that $k = 3\sqrt{3}$.

For that value of k, find the equations of the angle bisectors between the straight lines $l_1 = 0$ and $l_2 = 0$.

Let, l be the acute angle bisector of l_1 and l_2 . Show that the point $A \equiv (2,3)$ lies on the line l = 0.

Find the equation of the circle S with centre A and the length of the diameter is 3 units.

Find the perpendicular distance from the point A to the line $l_1 = 0$, hence find the equation of the tangent drawn from (-1,3) to the circle S.

From a point P on the line l=0, two tangents are drawn to the circle S so that they are perpendicular to each other.

Show that there are two such points for *P* and in each case find the coordinates.

Further, find the area of the quadrilateral which enclosed by the tangents.

- 17 (a) (i) Write down $\cos(A + B)$ In terms of $\cos A$, $\cos B$, $\sin A$, $\sin B$ and obtain an expression for $\cos 3A$ in terms of $\cos A$.
 - (ii) Determine constants λ and k such that,

$$\frac{2\cos 3x - 4\cos^5 x + 3\cos^3 x}{\cos x(1 + \sin^2 x)} = \lambda\cos 2x + k$$

Hence, find the maximum and minimum values of

$$f(x) = \frac{2\cos 3x - 4\cos^5 x + 3\cos^3 x}{\cos x(1 + \sin^2 x)}$$

and sketch the graph of y = f(x) for $x \in [-\pi, \pi]$

(b) A point P is inside the triangle ABC, such that $P\hat{A}B = P\hat{B}C = P\hat{C}A = \alpha$

By applying **Sine Rule** for suitable triangles, write down two expressions for PC_1 and show that $cot\alpha = cotA + cotB + cotC$

(c) Solve the equation $2tan^{-1}(cosx) = tan^{-1}(2cosecx)$ for $x \in (0, \frac{\pi}{2})$.
